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Luis Aceña*,‡

Departamento de Quı́mica Orgánica, UniVersidad de Valencia, E-46100 Burjassot,
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ABSTRACT

Chiral imino lactones derived from (R)-phenylglycinol containing an allyl- or propargyltrimethylsilyl group in the side chain readily cyclized in
the presence of acidic reagents to afford spirocyclic compounds with high diastereoselectivity. Removal of the chiral auxiliary produced
2-substituted 1-aminocycloalkanecarboxylic acids, whereas further cyclizations by means of metathesis or hydroamination reactions led to
bicyclic derivatives of pipecolic acid and proline.

Intramolecular addition reactions to N-alkyl- and N-
acyliminium ions usually play a pivotal role for construct-
ing nitrogen-containing cyclic compounds.1 For instance,
when allyl- or propargylsilyl functionalities are selected
as the internal nucleophiles, this strategy constitutes a
convenient access to cyclic homoallyl- or homoallenyl-

amines, respectively.2 In the context of our current work
employing chiral imino lactones derived from (R)-phe-
nylglycinol,3 we envisioned that cyclization of the derived
iminium ions 1 having an allyl- or propargyltrimethylsi-
lane at the end of the chain would lead to spirocyclic
compounds 2 bearing a vinyl or allenyl group, respec-
tively, installed on the newly created ring (Scheme 1). It
would be anticipated that the preexisting chiral center
would induce a high degree of stereocontrol in the
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formation of the quaternary center.4 These spirocycles 2
would be precursors of a variety of 1-aminocycloalkan-
ecarboxylic acids 3 (1-ACACs), an important class of
conformationally constrained mimics of proteinogenic
amino acids,5,6 which can also be used for the preparation
of oligomers showing defined secondary structures.7 In
addition, compounds 2 would be appropriate intermediates
for the synthesis of more complex bicyclic amino acids.

Starting from our previously reported imino lactone 4a
and its higher homologue 4b,8 elongation using a cross-
metathesis reaction with allyltrimethylsilane in the presence
of second-generation Grubbs catalyst (G-II) afforded allyl-
silanes 5a,b as an inconsequential mixture of trans and cis
isomers (ca. 90:10 ratio)9 (Scheme 2). Next, cyclization was
carried out using an excess of TFA in CH2Cl2 to yield
spirocycles 6a,b in good yields as the major products of a
mixture of four possible diastereoisomers (dr ) 74:14:12:0
and 84:14:2:0, respectively).10 After chromatographic puri-
fication, the major products 6a and 6b were isolated in 66%
and 60% yields, respectively. Subsequent hydrogenation of
6a afforded saturated derivative 7, which served to establish

the configuration of both newly formed sterereogenic centers
by X-ray diffraction analysis of a single crystal (Figure 1).
Conversely, extensive hydrogenation of both 6a and 6b also
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Scheme 1. Synthetic Strategy Scheme 2. Cyclization of Allylsilanes 5a,b

Figure 1. X-ray diffraction analysis of compound 7.
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removed the chiral auxiliary to produce amino acids 8a11

and 8b, respectively. Other deprotection procedures were also
evaluated in order to preserve the vinyl group. For instance,
lactone opening in 6b with LiOH followed by oxidative
cleavage of the phenylglycinol moiety with Pb(OAc)4

produced unsaturated six-membered amino acid 9.

The stereoselectivity observed in the cyclization step
may be rationalized by considering the corresponding
transition states. In the case of 5b, a chairlike transition
state having the allylsilane quasi-equatorial is preferred2d

(Scheme 3). Therefore, the allylsilane approaches the

iminium carbon mainly through the Re face opposite the
bulky phenyl group in a quasi-axial fashion,4 thus leading
to 6b as the major diastereoisomer. The dr was somewhat
lower in the cyclization of 5a due to the less significant
steric constraints associated with a five-membered transi-
tion state.

Then, we focused our attention on the cyclization of a
propargylsilane-substituted iminium ion. The appropriate
substrate was prepared by reaction of the already known
Grignard reagent 1012 with diethyl oxalate to give R-keto
ester 11 in moderate yield (based on the starting bromide
precursor), which was further converted into imino
lactone 12 by condensation with (R)-phenylglycinol
(Scheme 4).

Treatment of 12 with TFA led to the expected allene 13
in >95:5 diastereoselectivity, together with isomerized
imine 14 (43:57 ratio), the latter product arising from an
ene reaction with inverse electron demand13 (Table 1,

entry 1). Although both products were easily separated
by column chromatography, we tested other Lewis or
Brønsted acids in order to minimize the amount of 14,
and the best conditions found involved the use of neat
formic acid to produce 13 as the major product of a 92:8
mixture (entry 4).

Next, we undertook the preparation of bicyclic amino acid
derivatives by expedient transformations of the vinyl or
allenyl functionalities in the corresponding cyclization
products. Thus, acrylamide 15 was easily prepared from
spirocyclic amine 6a and cyclized afterward by means of a
ring-closing metathesis to yield tricyclic lactone 16 (Scheme
5). Since the presence of the lactam carbonyl impeded the
efficient removal of the phenylglycinol moiety,14 16 was
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Scheme 3. Transition States in the Cyclization of 5b to 6b

Scheme 4. Synthesis of Propargylsilane 12

Table 1. Cyclization of Propargylsilane 12

entry reagent temp (°C) yield of 13 (%) yield of 14 (%)

1 TFA 25 27 35
2 BF3·OEt2 0 to 25 24 56
3 TiCl4 -78 57 13
4 HCO2H (neat) 25 57 5
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treated first with BH3·THF to afford saturated derivative 17,
which was further hydrogenated to afford trans-fused bicyclic
pipecolic acid 18.15

Alternatively, allenylamine 13 was subjected to a gold(I)-
catalyzed intramolecular hydroamination reaction16,17 which
proceeded uneventfully to produce tricyclic compound 1918

(Scheme 6). Finally, hydrogenation of 19 and N-Boc protec-
tion of the resulting amino acid afforded bicycloproline
derivative 20.19

In conclusion, an efficient access to cyclic and bicyclic
amino acids has been achieved using as key synthetic step
the intramolecular addition of allyl- or propargylsilanes to
an iminium ion. The target compounds represent an attractive
group of conformationally constrained amino acids that could
be incorporated into peptidomimetic structures with potential

biological activities.20 Further applications of this methodol-
ogy are currently being studied in our laboratories.
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Scheme 5. Synthesis of Bicyclic Pipecolic Acid 18 Scheme 6. Synthesis of N-Boc-bicycloproline 20
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